0=-16x^2+64x+190

Simple and best practice solution for 0=-16x^2+64x+190 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16x^2+64x+190 equation:



0=-16x^2+64x+190
We move all terms to the left:
0-(-16x^2+64x+190)=0
We add all the numbers together, and all the variables
-(-16x^2+64x+190)=0
We get rid of parentheses
16x^2-64x-190=0
a = 16; b = -64; c = -190;
Δ = b2-4ac
Δ = -642-4·16·(-190)
Δ = 16256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{16256}=\sqrt{64*254}=\sqrt{64}*\sqrt{254}=8\sqrt{254}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-8\sqrt{254}}{2*16}=\frac{64-8\sqrt{254}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+8\sqrt{254}}{2*16}=\frac{64+8\sqrt{254}}{32} $

See similar equations:

| 6(9x+6)=684 | | -84=x^2+19x | | 9v-3=6 | | 5x-4x+3x=4-8 | | 9j+6=9j+7 | | 2x-20/8=2x | | -7b=-8-3b | | 3/4t-2/3t=5/6 | | 3x-43=2x-8 | | 8x+4x+60=90 | | 4x+2=122-6 | | 729=9(11x+4) | | 90=4x-2+3x+7 | | 3x-43=2x=8 | | x(x+1)=(x-1)(3x-5) | | N+5x-3=12 | | 5x-12+3x+64=180 | | 7(11x-21)=623 | | 6(11x-11)=528 | | 125m-75m+43,200=45,450-175m | | 3x+2=2x02 | | 6d-d=-15 | | -5(-4+x)=-15 | | 6(8x+10)=540 | | 0.5p=p+1 | | 592=8(6x+14) | | 3a+2a+a=7+13 | | 36=96/t | | 10-2(-8x-1)-2x=0 | | 416=8(6x+16) | | 5+9-14=2t=2t | | 3x=2=8x+11 |

Equations solver categories